Test Footer

Saturday, August 18, 2012

ظــــاهره تــكــون القــوس الكهربـــى

Electric Arc: to turn gases into electric conductors their temperature should reach a certain limit.
    - their molecules and atoms begin to lose electrons and the gases become conductors
     - Metals have their own conductive properties due to the existence of free electrons in their inside.
         - at surface there is a potential barrier produced by a layer of positive ions in the metal’s inside, which prevents electrons from escaping the surface
At metal temperature raised, energy is transmitted to electrons that may lead them to overcome the potential barrier, thus causing the thermionic emission and other forms to extract electrons from a metal is to expose it to a strong electric field called photoionic emission

Power and energy in the arc
 power absorbed by  arc is equal to multiply  current of  the arc Ia by voltage drop in column :Pa=IaUa
This energy is transformed in heat and is dissipated to the environment due to conduction, radiation and convection. Part of this heat is absorbed by the dissociation of the flow that surrounds the arc.
A high thermal conductivity and an improvement of the refrigeration conditions will reduce the temperature and increase the voltage drop and The rise of the pressure also produces an increase in the voltage drop

تعريف القوس الكهربائي: عمود من غاز متأين لغاز فقد تركيبه الجزئي (إلكترون التكافؤ) ، أي أن الوسط الذي حدث فيه أمتصت ذرته طاقة كافية لإطلاق إلكترونات وتكوين الأيونات و إختلاف كتلة الأيون الموجب عن كتلة الإلكترون الحر فإن إنجداب الإلكترونات الحرة ناحية الكاتود يكون أسرع .

تكون القوس الكهربائي
اولا :  اطلاق الإلكترونات البادئة: ينطلق ألكترون أو أكثر من سطح المعدن الذي يكون الكاتود و تبدأ عملية التصادم بين الإلكترونات المعجلة بفعل المجال الكهربائي المسلط ونواة الذرات في الوسط الواقع بين القطبين (الكاتود والأنود) ويطلق على هذه الإلكترونات (الإلكترونات البادئة ) أي هي التي تبدأ بعملية التأين، وتحتاج هذه الإلكترونات البادئة لطاقة معينة كي يمكنها مغادرة سطح المعدن نظرا لوجود ما يعرف بحاجز الجهد ، وتسمى هذه الطاقة بدالة الشغل ( الطاقه التى تكسر حاجز الجهد ) وهي الطاقة التي يكتسبها أسرع إلكترون في المادة في درجة حرارة الصفر المطلق كي يغادر سطح المادة، إن تزويد الإلكترونات بطاقة التأين ( EW ) ( دالة الشغل ) يمكنه الخروج من المعدن اى من الغلاف الخارجى للماده ( غلاف التوصيل ) وأن أي طاقة تزيد عليها تتحول إلى طاقة حركية يمتلكها الإلكترون الحر.

ثانيا : سريان القوس الكهربائي: لحظة تباعد الملامسات ينطلاق الإلكترون ويتحرر بسبب قوة المجال من سطح الكاتود و تكون شدة المجال عالية ( 10v/3cm ) فعندما تتواجد الإلكترونات والأيونات في المجال الكهربائي ( E ) وتصبح تحت تاثير قوة شحنة الجسيم ( أيون أو إلكترون ) وتتحرك هذه الأيونات و الإلكترونات تحت تأثير هذه القوة وبعد تحريكها لمسافة قصيرة تصطدم مع جزيئات أخرى، ويعرف متوسط المسافة بين تصادمين متتابعين بمتوسط المسار الحر، وتعتمد قيمته على حجم الجزيئات ودرجة الحرارة والضغط وإذا إكتسب الجزيئ المشحون ( أيون أو إلكترون) أثناء حركته بين تصادمين متتابعين سرعة عالية كافية ( طاقة حركية ) فعند تصادمه مع جزيئ أخر قد يحدث به تأين عن طريق إزالة إلكترون أو أكثر منه وتسمى هذه العملية بالتأين التصادمي وقد تعمل الإلكترونات الجديدة على تأين جزيئات أخرى بحيث تصبح العملية تراكمية( تزايدية ) وإذا كان تدرج الجهد ( E ) كبيرالدرجة أن يصبح هذا التأين التراكمي مستمرا فإن هذا يأدي إلى ظهور التفريغ أو القوس.  وعندما يصطدم جسيم مشحون بذرة أو جزيئ فإنه قد يسبب في فقد الكترون خارجي من مداره في الذرة وقد ينفصل هذا الإلكترون عن الذرة كليا وفي هذه الحالة تكتسب الذرة شحنة موجبة وتعتبر متأينة، وقد يزاح الإلكترون التالى إلى مدار أعلى ويقال أن الذرة مثارة وهذا المدار غير متزن بالنسبة للإلكترون المزاح بحيث أنه إذا لم تصطدم الذرة المثارة بجسم آخر متحرك ( أيون أو إلكترون ) في خلال فترة قصيرة جدا ( 2-10 sec ) فإن الإلكترون يسقط ثانية إلى مداره الأصلي  وأثناء ذلك يتخلص من الطاقة الزائدة التي إكتسبها في صورة ضوء مرئي عند زيادة المجال إلى درجة كافية لحدوث عملية التأين فإننا نلاحظ أن التأثير يحدث في كل فراغ بين اطراف  الموصل في وقت واحد ويؤدي إنهيار كهربائي شامل و عملية التأين تزداد كلما زادت شدة المجال الكهربائي، وزيادة الطاقة الحرارية المتولدة بين سطحي الملامسات ( الإنبعات الحراري الناتج من التصادم والذى يولد حراره كافيه لفصل الكترونات اخرى ) وكذلك عند زيادة المسافة المتوسطة الحرة للإلكترون (متوسط المسار الحر الذى يعجل من التصادم )، و الإنبعات الأيوني والإنبعات الحراري والتأين الحراري ، وهذه العمليات تجعل  القوس الكهربائي ذو تيار كافي يؤدي إلى زيادة درجة الحرارة بحيث تكون كافية لخلق الإنبعات الحراري بين الجسيمات  الذي يكون مصدرا رئيسيا للإستمرار التوصيل الكهربائي بين الملامسات

خطورة القوس الكهربائي: عند فتح الدائرة الكهربائية بواسطة القاطع الكهربائي فإنه لابد من حدوث القوس الكهربائي وحيث أن القاطع بشكله البسيط يتألف من قطعتي تماس تنطبقان على بعضهما البعض عندما يراد قفل الدائرة، وتنفصلان عن بعضهما عندما يراد فتح الدائرة الكهربائية، وذلك بسحبهما وإبعادهما بقوة، ونظرا لخطورة إستمرار القوس الكهربائي على القاطع وبقية عناصر الشبكة، حيث يولد إستمرار سريان القوس الكهربائي حرارة عالية جدا وتموجات كهرومغناطيسية قد تنتقل إلى المنظومة، وقد تؤدي إلى إنهيار عازلية بعض المعدات الكهربائية، ولذلك وجد أنه من الضروري إخماد القوس الكهربائي المتكون بين الملامسات للقاطع، ففي حالة التحميل العادي يسبب القوس الكهربائي في إستمرار مرور التيار الكهربائي بين الملامسات أثناء عملية فصل القاطع، أما في حالات القصر يكون التيار المراد فصله كبير جدا (من عشرة إلى مائة ضعف التيار العادي ) وهذا التيار يؤدي إلى تلف ملامسات القاطع أو القاطع بكامله، في حالة إستمرار القوس فترة زمنية غير محسوبة سابقا، وذلك نتيجة الطاقة المتولدة عنه، ويتم إستبدال ملامسات القاطع بعد عدة مرات فصله لتيار العطل الذي ينتج عنه القوس الكهربائي بين الملامسين.
وكذلك يؤدي تيار العطل إلى أضرار وخاصة في معدات محطات التحويل والتوليد، وبما أن القوس الكهربائي يمثل إستمرار لتدفق التيار في الشبكة (المنظومة الكهربائية) فإنه يؤدي إلى ضياع قدرة كهربائية في حالة إستمرار القوس الكهربائي، أي أنه كلما إستمر لفترة أطول زادت القدرة المفقودة في حالات العطل.

نظرية إخماد القوس الكهربائي في التيار المتردد: التيار يمر بنقطة الصفر، أي أن القوس يكون قد أخمد عند لحظة الإخماد الطبيعية هذه وطبقا للعلاقة بين تيار القوس وجهد القوس أن الجهد بين الملامسين يرتفع وتعتمد قيمته على عدة مؤثرات أخرى كمعامل القدرة . وهذا الجهد الناتج يحاول إرجاع القوس إلى حالته الأولى نظرا لوجود الوسط المتأين وعدم وصول المسافة بين الملامسين إلى مثانتها وعازليتها الكافية للتغلب على الإنهيار بفعل الجهد المسلط عليها، إذا تم زيادة عازلية الوسط بين الملامسات بأي وسيلة أي أن الوسط بين الملامسات إمتلك قوة عازلية أكبر من تدرج الجهد خلاله فإنه سوف يتم إخماد القوس، أما إذا ما كانت قوة العازلية من وسط أقل من تدرج الجهد خلالها فإن تيار القوس سيستمر أي دورة أخرى وهكذا يمكننا النظر إلى هذه العملية كأنها سباق بين معدل إستعادة الوسط بين الملامسات إلى متانة وقوة عازلية عن طريق إزالة الوسط المتأين وبين معدل إرتفاع الجهد بين الملامسات وتوضح عملية إخماد القوس بنظرية أخرى تعرف بنظرية إتزان الطاقة

أساسيات إخماد القوس الكهربائي: التغلب على الأسباب التي تؤدي إلى خلق الإلكترونات والأيونات أو تخفيضها إلى الدرجة التي لا تؤدي إلى خلق وسط متأين:
1
- تخفيض حركة الإلكترونات النشطة عن طريق تبريد الوسط، وبذلك تقل أو تتلاشى إحتمالية توليد إلكترونات بفعل التصادم، وتساعد في إحتمالية إعادة تركيب الإلكترونات في مداراتها بعد أن تفقد طاقتها المكتسبه اى يعود الالكترون الى مداره الطبيعى بعد ان فقد الطاقه التى اهلته للقفذ الى المستوى الاعلى او ترك الذره.
2
- زيادة المسافة بين الملامسات وبذلك يقل تدرج الجهد ويزيد من مقاومة القوس مما يؤدي إلى إنخفاض قيمة تيار القوس وبالتالي درجة الحرارة المتولدة عنه .

وسائل اخماد القوس الكهربى
اولا : تقسيم القوس الكهربائي : يتم تقسيم القوس الكهربائي بغرض إطالة مساره وزيادة مقاومته، وذلك بما يسمى بمقسمات القوس، وهذه المقسمات عبارة عن مجموعة من الألواح المعدنية موضوعة في الحجرة القوسية داخل القاطع الآلي، فعندما ينتقل القوس الكهربائي تحت تأثير قوة مغناطيسية أو بتأثير دفعة بالهواء أوبأى وسط أخر على المقسمات ينقسم إلى عدة أقواس صغيرة على التوالي وبالإضافة إلى تقسيم القوس فإن الألواح تقوم بتبريده حيث أن موصليتها الحرارية أكبر من موصلية الغازات، ويمكن أيضا وضع قطع من مادة عازلة بين الألواح تقوم بخلق كمية كبيرة من الغازات نتيجة لإرتفاع درجة حرارتها بحيث تساعد هذه الغازات على إزالة التأين وعلى إخماد القوس الكهربائي، وفي بعض الأنواع من القواطع الآلية تستخدم مقسمات قوسية عبارة عن ألواح من الصلب على شكل يشبه حدوة الفرس تحيط بالملامسات

ثانيا :  إستبدال الوسط المتأين بوسط غير متأين: يعتمد القوس على تأين الوسط بين الملامسات ، ولكي تحول دون إستمراره تقوم بإستبدال هذا الوسط والذي هو في الواقع ذرات متفككة إلى أيون سالب وبروتون موجب وإلكترون حر بوسط آخر ذراته غير متفككة بالإضافة إلى برودته والتي تساهم في التخفيض من معدل التأين.
ثالثا: إطالة مسار القوس الكهربائي: يتم إطالة مسار القوس الكهربائي عن طريق زيادة المسافة بين الملامسات حتى تزداد قيمة المقاومة التي يلاقيها التيار أثناء سريانه بين الملامسات، بذلك يزداد الهبوط في الجهد للقوس مما يساعد على إخماده ----  اى يقل التدرج فى الجهد الى ان ينعدم

رابعا:  إمتصاص الإلكترونات الحرة: إن القوس عبارة عن وسط متأين يحتوي على إلكترونات حرة، وأيونات موجبة وسالبة، فإذا ما وجد غاز له شراهية لإمتصاص الإلكترونات الحرة فإنه يكمن للغاز أن يمتص الإلكترونات الحرةونتخلص من عملية التأين بالتصادم، وتتم السيطرة على القوس الذي هو عبارة عن سريان الإلكترونات .

طرق إخماد القوس الكهربائي: القواطع الآلية الحديثة لا تكتفي بتطبيق وسيلة واحدة بإخماد القوس الكهربائي بل تتوخى في إستعمالها تطبيق عدة وسائل لنفس النوع في نفس اللحظة وذلك للحصول على كفاءة عالية في إخماده بسرعة عالية ودون أن تتأثر المعدة بشكل أو بآخر، والأنواع المستعملة فيها هذه الوسائل كالآتي:

اولا:  إخماد القوس الكهربائي بطريقة الهواء المضغوط: يتم توجيه الهواء بضغط معين وبشكل مباشر لتبريد الوسط الساخن والمتأين ويحل محله وسط غير متأين وبارد.
إن عازلية الهواء بالإضافة إلى سرعة تدفقه تأمن إخماد القوس الكهربائي المتكون بفاعلية عالية و لتصل سرعة الهواء المتدفق إلى سرعة الصوت بالإضافة إلى أن صلابة العازلية تتناسب مع زيادة الضغط للهواء، كما يمكن تقسيم القوس الكهربائي بفعل الهواء المضغوط وبإستخدام مقسمات القوس إلى أقواس صغيرة على التوالي، في هذه الطريقة تم إستعمال ثلاث وسائل لإخماد القوس الكهربائي وهي ( تقسيم القوس – إطالة مسار القوس – إستبدال الوسط الساخن المتأين بوسط بارد وغير متأين ).

ثانيا- إخماد القوس الكهربائي بإستخدام الزيوت الصناعية: يكون وسط الإخماد في هذه الحالة هو الزيت الصناعي ويعتبر الزيت الصناعي من المواد العازلة العضوية صغيرة الجزيئات وهي أكبر من من عازلية مقارنة مع الهواء نتيجة لتبخرها وتحللها، وهذه العملية هي التي تحدد الأثر الأساسي للزيوت في إخماد القوس الكهربائي، عند حدوث القوس الكهربائي داخل الزيت تحدث عملية إحتراق لجزء من الزيت مما يؤدي إلى توليد غازات مثل ثاني أكسيد الكربون والأكسجين وهذه الغازات تسبب في إضطراب دوامي داخل الزيت مما يؤدي إلى تبريد الزيت وتصاعد الغازات المتولدة إلى أعلى القاطع وتؤدي إلى ضغط من الأعلى على الزيت النقي ليحل محله الزيت المحروق وهذا الضغط يصل حوالي ( 50 -305 ) ضغط جوي يساهم في إخماد القوس الكهربائي كما يمكن إستغلال الغازات الناتجة عن عملية إحتراق الزيت في تطويل مسار القوس الكهربائي وذلك عن طريق مقسمات القوس الموجودة داخل غرفة القاطع، كما يمكن بطريقة أخرى وذلك بحقن الزيت ودفعه بضغط على القوس الكهربائي كما في حالة الهواء المضغوط وفي هذه الطريقة تم توفير نفس الثلاث طرق السابقه لإخماد القوس الكهربائي

ثالثا - إخماد القوس الكهربائي بواسطة غاز إصطناعي مضغوط: يستعمل في هذه الطريقة غاز سادس فلوريد الكبريت بأسلوب مماثل لإستعمال الهواء المضغوط بإختلاف وحيد وهو وجوب تخزين الغاز في خزانات عازلة للرطوبة بشكل مستمر وتحت ضغط معين، وغاز سادس فلوريد الكبريت غازخامل وذلك فإن جزيئاته لها قابلية شديدة لإمتصاص الإلكترونات الحرة، وهو وسط ممتاز لإخماد القوس الكهربائي المتكون لأنه وبسرعة يمتص الإلكترونات الحرة المتكونة ويحول الوسط من وسط موصل إلى وسط عازل وهذا بالإضافة إلى أنه غير قابل للإشتعال، وعند ضغط هذا الغاز 3 ضغط جوي فإن عازليته تصل 2.5 من عازلية الهواء الجوي، وذلك فإنه عند تسليط هذا الغاز على القوس الكهربائي فإنه يقوم بإمتصاص الإلكترونات الحرة وإطالة مسار القوس نتيجة الضغط بالإضافة ان كون الغاز المضغوط غير ساخن وغير متأين، وفي هذه الطريقة تم توفير الوسائل التالية ( إمتصاص الإلكترونات الحرة – إستبدال الوسط المتأين الساخن بوسط غير متأين وبارد – إطالة مسار القوس الكهربائي ).


2 comments:

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More